24小时故障咨询电话 点击右边热线,在线解答故障拨打:400-716-5055
德阳诺科壁挂炉售后电话号码_加强源头监管 筑牢人工智能数据底座

德阳诺科壁挂炉售后电话号码

全国报修热线:400-716-5055

更新时间:

德阳诺科壁挂炉24小时售后客服电话丨全国400服务热线







德阳诺科壁挂炉售后电话号码:(1)400-716-5055(点击咨询)(2)400-716-5055(点击咨询)









德阳诺科壁挂炉售后服务维修电话(24小时)全国400号码统一客服热线(1)400-716-5055(点击咨询)(2)400-716-5055(点击咨询)





德阳诺科壁挂炉售后电话-全国400售后服务热线

德阳诺科壁挂炉售后服务电话24小时-全国各市24小时服务热线









快速配件订购系统,减少等待:我们拥有高效的配件订购系统,与多家供应商建立长期合作关系,确保在需要时能够快速订购到所需配件,减少客户等待时间。




德阳诺科壁挂炉服务电话-人工客服24小时服务热线









德阳诺科壁挂炉客服售后电话 - 售后24小时服务电话号码

 红河个旧市、北京市顺义区、朔州市山阴县、台州市温岭市、梅州市五华县、海北祁连县、扬州市邗江区、临夏临夏县、无锡市惠山区





河源市源城区、恩施州建始县、三沙市西沙区、阿坝藏族羌族自治州阿坝县、锦州市凌海市、株洲市石峰区、台州市路桥区









内蒙古呼伦贝尔市阿荣旗、锦州市义县、昌江黎族自治县王下乡、抚州市金溪县、广西柳州市柳南区、潍坊市潍城区、长春市德惠市、营口市盖州市









宁夏中卫市中宁县、阿坝藏族羌族自治州理县、马鞍山市花山区、昭通市水富市、绍兴市上虞区、甘孜德格县、漳州市云霄县、聊城市东阿县、抚州市南城县、定安县雷鸣镇









珠海市金湾区、黔南惠水县、儋州市王五镇、西宁市湟中区、东莞市万江街道、广西梧州市藤县、德宏傣族景颇族自治州盈江县、七台河市新兴区、遵义市绥阳县、武汉市江岸区









厦门市海沧区、成都市都江堰市、营口市大石桥市、陵水黎族自治县椰林镇、济宁市嘉祥县









日照市东港区、临汾市尧都区、内蒙古鄂尔多斯市康巴什区、永州市新田县、九江市修水县、保山市昌宁县、上海市金山区、眉山市东坡区









陇南市武都区、内蒙古锡林郭勒盟二连浩特市、荆州市监利市、周口市项城市、榆林市府谷县、南京市溧水区、果洛达日县、运城市芮城县、德宏傣族景颇族自治州瑞丽市、肇庆市德庆县









合肥市肥东县、自贡市沿滩区、蚌埠市蚌山区、临高县调楼镇、中山市南头镇、汉中市西乡县、黔东南黎平县









保亭黎族苗族自治县什玲、澄迈县福山镇、太原市娄烦县、成都市成华区、琼海市会山镇









益阳市安化县、宿迁市宿城区、南充市仪陇县、庆阳市庆城县、济南市槐荫区、徐州市贾汪区、黄冈市红安县、红河蒙自市、齐齐哈尔市龙沙区









商洛市商南县、白山市临江市、本溪市明山区、岳阳市岳阳楼区、海南贵德县、汕头市潮阳区









汕头市南澳县、宁夏吴忠市红寺堡区、黔西南兴仁市、九江市湖口县、马鞍山市当涂县、文昌市潭牛镇、金华市金东区、蚌埠市固镇县、上海市杨浦区、广西崇左市宁明县









温州市鹿城区、宁夏吴忠市青铜峡市、白沙黎族自治县南开乡、无锡市宜兴市、锦州市凌河区、雅安市荥经县、抚顺市抚顺县、株洲市石峰区









鸡西市虎林市、平凉市静宁县、万宁市三更罗镇、北京市大兴区、清远市连南瑶族自治县、庆阳市华池县、沈阳市铁西区、东莞市麻涌镇、平凉市庄浪县、宁波市宁海县









内蒙古呼和浩特市清水河县、眉山市仁寿县、广西桂林市平乐县、内蒙古呼和浩特市和林格尔县、铜川市耀州区、温州市瑞安市、湛江市遂溪县、三沙市西沙区、广安市邻水县、宁波市鄞州区









五指山市南圣、通化市通化县、重庆市奉节县、三亚市天涯区、鸡西市虎林市

加强源头监管 筑牢人工智能数据底座

  当前,人工智能已深度融入经济社会发展的方方面面,在深刻改变人类生产生活方式的同时,也成为关乎高质量发展和高水平安全的关键领域。然而,人工智能的训练数据存在良莠不齐的问题,其中不乏虚假信息、虚构内容和偏见性观点,造成数据源污染,给人工智能安全带来新的挑战。

  数据是人工智能的基础

  人工智能的三大核心要素是算法、算力和数据,其中数据是训练AI模型的基础要素,也是AI应用的核心资源。

  ——提供AI模型的原料。海量数据为AI模型提供了充足的训练素材,使其得以学习数据的内在规律和模式,实现语义理解、智能决策和内容生成。同时,数据也驱动人工智能不断优化性能和精度,实现模型的迭代升级,以适应新需求。

  ——影响AI模型的性能。AI模型对数据的数量、质量及多样性要求极高。充足的数据量是充分训练大规模模型的前提;高准确性、完整性和一致性的数据能有效避免误导模型;覆盖多个领域的多样化数据,则能提升模型应对实际复杂场景的能力。

  ——促进AI模型的应用。数据资源的日益丰富,加速了“人工智能+”行动的落地,有力促进了人工智能与经济社会各领域的深度融合。这不仅培育和发展了新质生产力,更推动我国科技跨越式发展、产业优化升级、生产力整体跃升。

  数据污染冲击安全防线

  高质量的数据能够显著提升模型的准确性和可靠性,但数据一旦受到污染,则可能导致模型决策失误甚至AI系统失效,存在一定的安全隐患。

  ——投放有害内容。通过篡改、虚构和重复等“数据投毒”行为产生的污染数据,将干扰模型在训练阶段的参数调整,削弱模型性能、降低其准确性,甚至诱发有害输出。研究显示,当训练数据集中仅有0.01%的虚假文本时,模型输出的有害内容会增加11.2%;即使是0.001%的虚假文本,其有害输出也会相应上升7.2%。

  ——造成递归污染。受到数据污染的人工智能生成的虚假内容,可能成为后续模型训练的数据源,形成具有延续性的“污染遗留效应”。当前,互联网AI生成内容在数量上已远超人类生产的真实内容,大量低质量及非客观数据充斥其中,导致AI训练数据集中的错误信息逐代累积,最终扭曲模型本身的认知能力。

  ——引发现实风险。数据污染还可能引发一系列现实风险,尤其在金融市场、公共安全和医疗健康等领域。在金融领域,不法分子利用AI炮制虚假信息,造成数据污染,可能引发股价异常波动,构成新型市场操纵风险;在公共安全领域,数据污染容易扰动公众认知、误导社会舆论,诱发社会恐慌情绪;在医疗健康领域,数据污染则可能致使模型生成错误诊疗建议,不仅危及患者生命安全,也加剧伪科学的传播。

  筑牢人工智能数据底座

  ——加强源头监管,防范污染生成。以《网络安全法》《数据安全法》《个人信息保护法》等法律法规为依据,建立AI数据分类分级保护制度,从根本上防范污染数据的产生,助力有效防范AI数据安全威胁。

  ——强化风险评估,保障数据流通。加强对人工智能数据安全风险的整体评估,确保数据在采集、存储、传输、使用、交换和备份等全生命周期环节安全。同步加快构建人工智能安全风险分类管理体系,不断提高数据安全综合保障能力。

  ——末端清洗修复,构建治理框架。定期依据法规标准清洗修复受污数据。依据相关法律法规及行业标准,制定数据清洗的具体规则。逐步构建模块化、可监测、可扩展的数据治理框架,实现持续管理与质量把控。

  国家安全机关将在以习近平同志为核心的党中央坚强领导下,全面贯彻总体国家安全观,与有关部门一道防范针对我人工智能领域的数据污染风险,依法维护人工智能安全和数据安全,不断筑牢国家安全屏障。

  来源:国家安全部微信公众号 【编辑:惠小东】

相关推荐: