24小时故障咨询电话 点击右边热线,在线解答故障拨打:400-716-5055
洛昌达保险柜全国售后维修电话号码_光合生物如何适应进化?中国团队破解高效捕获利用光能分子机制

洛昌达保险柜全国售后维修电话号码

全国报修热线:400-716-5055

更新时间:

洛昌达保险柜24小时售后客服电话丨全国400服务热线
































洛昌达保险柜全国售后维修电话号码:(1)400-716-5055(2)400-716-5055




























洛昌达保险柜400-716-5055维修配件防伪标签验证教程:我们提供防伪标签验证教程,帮助您轻松识别正品配件。















洛昌达保险柜服务电话24小时全国24小时统一服务点电话:(3)400-716-5055(4)400-716-5055






























































































洛昌达保险柜全国统一24小时400中心:(5)400-716-5055,





























































































客户紧急联络机制:建立客户紧急联络机制,确保在关键时刻能迅速响应。
































































































洛昌达保险柜维修服务环境清洁,保持卫生整洁:在维修过程中,我们注重保持环境清洁,使用防尘布、鞋套等防护措施,减少对客户家居环境的影响。
















































































































金华市义乌市、昆明市嵩明县、东莞市厚街镇、宜昌市长阳土家族自治县、丽江市宁蒗彝族自治县
















































































































内蒙古呼伦贝尔市根河市、哈尔滨市道外区、延边图们市、成都市都江堰市、辽阳市宏伟区、湘西州凤凰县、乐东黎族自治县抱由镇、直辖县潜江市、内蒙古鄂尔多斯市鄂托克前旗、咸阳市淳化县
































































































安阳市殷都区、楚雄元谋县、惠州市博罗县、广西贵港市覃塘区、襄阳市襄城区、东莞市东坑镇、七台河市新兴区、黄冈市浠水县、凉山金阳县



















光合生物如何适应进化?中国团队破解高效捕获利用光能分子机制

  中新网北京9月12日电 (记者 孙自法)作为海洋中主要浮游植物之一,颗石藻能适应海水不同深度的多变光环境,高效的光合自养生长可助其快速繁殖,但颗石藻光系统复合物如何能高效捕获和利用光能的微观机理及进化机制,此前并不清楚,也备受关注。

  来自中国科学院的消息说,中国科学家团队最近在光合生物适应进化研究中取得一项重大发现:首次在原子层面揭示颗石藻通过扩展和优化其光系统结构来适应海洋光环境的独特策略,成功破解了颗石藻光系统复合物高效利用光能的分子机制。

颗石藻光系统I-捕光天线超大复合物结构及其能量转化效率示意图。中国科学院植物研究所 供图

  这项重要研究突破由中国科学院植物研究所王文达研究员、田利金研究员带领团队完成,他们首次纯化并解析来自赫氏艾米里颗石藻的光系统I-岩藻黄素叶绿素a/c结合蛋白(PSI-FCPI)超级复合物三维结构,破解了光合生物适应进化的分子机制。北京时间9月12日凌晨,该研究成果论文以封面形式在国际知名学术期刊《科学》上线发表。

  王文达表示,颗石藻光系统复合物的结构解析和机理研究,为理解光合生物高效的能量转化机制提供了新的结构模型。未来,研究团队也希望以此为基础设计新型光合作用蛋白,并进一步指导人工模拟和开发高碳汇生物资源,这在合成生物学和气候变化应对领域,都具有巨大潜力。

  田利金介绍说,颗石藻PSI-FCPI超级复合物是一个巨大光合膜蛋白机器,由51个蛋白亚基和819个色素分子组成,分子量高达1.66兆道尔顿,远超已知的真核生物光系统I捕光天线复合物。它的捕光截面是典型陆地植物(豌豆)光系统I超级复合物的4至5倍。飞秒瞬态吸收光谱结果表明,颗石藻PSI-FCPI捕获光能的量子转化效率超过95%,与陆地植物光系统I超级复合物效率相当,说明颗石藻PSI-FCPI具备特殊的蛋白组装和能量传递特征。

  此次研究发现,颗石藻的光系统I核心周围环绕着38个岩藻黄素叶绿素a/c结合蛋白捕光天线,并以模块化的方式排列成8个放射状排布的捕光天线条带。这种“旋涡围绕”光系统I核心的巨型捕光天线依靠大量新型捕光天线的精密装配,极大扩展了捕光面积。

  研究团队还鉴定到丰富的叶绿素c和岩藻黄素类型的类胡萝卜素,这些色素在新发现的捕光天线中含量极高,使其能有效吸收深水区波长在460-540纳米间的蓝绿光和绿光。此外,大量叶绿素c与叶绿素a形成紧密的能量耦联并消除能量陷阱,构成平坦畅通的能量传递网络,这可能是其保持超高量子转化效率的关键。

  据了解,颗石藻细胞壁是由碳酸钙晶体组成的颗石片,其在白垩纪达到鼎盛,不仅是海洋初级生产力的主要贡献者,还依靠其碳酸钙外壳在地层中留下显著的“白垩”痕迹,因此在海洋碳沉积和全球碳循环中扮演重要角色。(完)

【编辑:李润泽】
相关推荐: