24小时故障咨询电话 点击右边热线,在线解答故障拨打:400-716-5055
迅达燃气灶24小时人工服务电话是多少-售后服务电话24小时

迅达燃气灶24小时人工服务电话是多少-售后服务电话24小时

全国报修热线:400-716-5055

更新时间:

迅达燃气灶客服售后电话 - 售后24小时服务电话号码







迅达燃气灶24小时人工服务电话是多少-售后服务电话24小时:(1)400-716-5055(点击咨询)(2)400-716-5055(点击咨询)









迅达燃气灶全国统一售后维修中心电话(1)400-716-5055(点击咨询)(2)400-716-5055(点击咨询)





迅达燃气灶服务电话全国号码

迅达燃气灶售后维修服务点号码









透明的维修报价,让您清晰了解每项服务的费用,避免额外费用烦恼。




迅达燃气灶全国售后服务400电话(全国联保)24小时客服中心









迅达燃气灶全国统一服务热线号码

 龙岩市武平县、郑州市中原区、内蒙古通辽市科尔沁区、海口市龙华区、广西北海市银海区、抚顺市望花区、怀化市麻阳苗族自治县





忻州市宁武县、文昌市翁田镇、咸宁市崇阳县、齐齐哈尔市昂昂溪区、兰州市榆中县、大理剑川县、淮南市凤台县、广州市南沙区









文昌市锦山镇、鄂州市梁子湖区、衡阳市常宁市、阿坝藏族羌族自治州壤塘县、中山市神湾镇、成都市金牛区、丹东市宽甸满族自治县、贵阳市清镇市









芜湖市弋江区、聊城市茌平区、内蒙古乌兰察布市集宁区、德阳市旌阳区、宁波市象山县、吕梁市孝义市、宝鸡市太白县、儋州市木棠镇、厦门市湖里区、肇庆市四会市









双鸭山市宝山区、张掖市民乐县、儋州市排浦镇、吉安市吉安县、成都市新津区、内蒙古赤峰市元宝山区、德州市宁津县、辽阳市白塔区、宁波市江北区、沈阳市浑南区









太原市小店区、昌江黎族自治县乌烈镇、内蒙古巴彦淖尔市磴口县、潍坊市昌乐县、广元市昭化区









白城市洮北区、东莞市凤岗镇、淮南市大通区、哈尔滨市巴彦县、金华市武义县、北京市密云区、澄迈县文儒镇









北京市通州区、上海市金山区、潍坊市高密市、榆林市横山区、黔南贵定县、遵义市凤冈县、许昌市襄城县、南充市阆中市、三明市永安市、运城市垣曲县









肇庆市四会市、朔州市山阴县、中山市中山港街道、渭南市临渭区、黄石市下陆区、佛山市高明区、临高县调楼镇、黔西南望谟县、天水市张家川回族自治县、漳州市漳浦县









东方市感城镇、潍坊市诸城市、平顶山市舞钢市、广西崇左市龙州县、沈阳市大东区、济宁市嘉祥县









上海市嘉定区、广西百色市田林县、安康市紫阳县、平顶山市鲁山县、内蒙古鄂尔多斯市鄂托克旗、济宁市嘉祥县、玉溪市新平彝族傣族自治县、大兴安岭地区漠河市、巴中市平昌县









芜湖市繁昌区、九江市武宁县、忻州市定襄县、衡阳市衡东县、茂名市电白区、合肥市巢湖市、毕节市赫章县、台州市椒江区、大兴安岭地区松岭区、岳阳市君山区









赣州市宁都县、德阳市旌阳区、广州市增城区、上饶市铅山县、庆阳市环县、澄迈县老城镇、黄冈市团风县









鸡西市城子河区、佛山市高明区、玉树称多县、运城市新绛县、遵义市习水县、成都市彭州市、葫芦岛市连山区、广元市剑阁县









宿迁市泗阳县、广西来宾市合山市、延安市延长县、上海市崇明区、天水市甘谷县









湘潭市湘乡市、恩施州宣恩县、内蒙古锡林郭勒盟二连浩特市、平顶山市郏县、抚顺市清原满族自治县、延安市宜川县、金华市永康市









忻州市五台县、德州市庆云县、凉山越西县、忻州市原平市、宝鸡市金台区、大理大理市、玉树囊谦县、绵阳市涪城区、宿迁市泗阳县、丽水市缙云县

人工智能训练数据良莠不齐 国安部提示警惕AI“数据投毒”行为

  当前,人工智能已深度融入经济社会发展的方方面面,在深刻改变人类生产生活方式的同时,也成为关乎高质量发展和高水平安全的关键领域。然而,人工智能的训练数据存在良莠不齐的问题,其中不乏虚假信息、虚构内容和偏见性观点,造成数据源污染,给人工智能安全带来新的挑战。

  数据是人工智能的基础

  人工智能的三大核心要素是算法、算力和数据,其中数据是训练AI模型的基础要素,也是AI应用的核心资源。

  ——提供AI模型的原料。海量数据为AI模型提供了充足的训练素材,使其得以学习数据的内在规律和模式,实现语义理解、智能决策和内容生成。同时,数据也驱动人工智能不断优化性能和精度,实现模型的迭代升级,以适应新需求。

  ——影响AI模型的性能。AI模型对数据的数量、质量及多样性要求极高。充足的数据量是充分训练大规模模型的前提;高准确性、完整性和一致性的数据能有效避免误导模型;覆盖多个领域的多样化数据,则能提升模型应对实际复杂场景的能力。

  ——促进AI模型的应用。数据资源的日益丰富,加速了“人工智能+”行动的落地,有力促进了人工智能与经济社会各领域的深度融合。这不仅培育和发展了新质生产力,更推动我国科技跨越式发展、产业优化升级、生产力整体跃升。

  数据污染冲击安全防线

  高质量的数据能够显著提升模型的准确性和可靠性,但数据一旦受到污染,则可能导致模型决策失误甚至AI系统失效,存在一定的安全隐患。

  ——投放有害内容。通过篡改、虚构和重复等“数据投毒”行为产生的污染数据,将干扰模型在训练阶段的参数调整,削弱模型性能、降低其准确性,甚至诱发有害输出。研究显示,当训练数据集中仅有0.01%的虚假文本时,模型输出的有害内容会增加11.2%;即使是0.001%的虚假文本,其有害输出也会相应上升7.2%。

  ——造成递归污染。受到数据污染的人工智能生成的虚假内容,可能成为后续模型训练的数据源,形成具有延续性的“污染遗留效应”。当前,互联网AI生成内容在数量上已远超人类生产的真实内容,大量低质量及非客观数据充斥其中,导致AI训练数据集中的错误信息逐代累积,最终扭曲模型本身的认知能力。

  ——引发现实风险。数据污染还可能引发一系列现实风险,尤其在金融市场、公共安全和医疗健康等领域。在金融领域,不法分子利用AI炮制虚假信息,造成数据污染,可能引发股价异常波动,构成新型市场操纵风险;在公共安全领域,数据污染容易扰动公众认知、误导社会舆论,诱发社会恐慌情绪;在医疗健康领域,数据污染则可能致使模型生成错误诊疗建议,不仅危及患者生命安全,也加剧伪科学的传播。

  筑牢人工智能数据底座

  ——加强源头监管,防范污染生成。以《网络安全法》《数据安全法》《个人信息保护法》等法律法规为依据,建立AI数据分类分级保护制度,从根本上防范污染数据的产生,助力有效防范AI数据安全威胁。

  ——强化风险评估,保障数据流通。加强对人工智能数据安全风险的整体评估,确保数据在采集、存储、传输、使用、交换和备份等全生命周期环节安全。同步加快构建人工智能安全风险分类管理体系,不断提高数据安全综合保障能力。

  ——末端清洗修复,构建治理框架。定期依据法规标准清洗修复受污数据。依据相关法律法规及行业标准,制定数据清洗的具体规则。逐步构建模块化、可监测、可扩展的数据治理框架,实现持续管理与质量把控。

  国家安全机关将在以习近平同志为核心的党中央坚强领导下,全面贯彻总体国家安全观,与有关部门一道防范针对我人工智能领域的数据污染风险,依法维护人工智能安全和数据安全,不断筑牢国家安全屏障。

  来源:国家安全部微信公众号 【编辑:付子豪】

相关推荐: